Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bohari M. Yamin* and M. Sukeri M. Yusof

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.135$
Data-to-parameter ratio $=18.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

$N, N^{\prime}-$ Bis(benzamidothiocarbonyl)hydrazine dimethyl sulfoxide disolvate

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$, the molecule is discrete and centrosymmetric. The benzoylthiuourea and benzoyl groups are cis and trans, respectively, to the thiourea S atom across the $\mathrm{C}-\mathrm{N}$ bonds. In the crystal structure, the molecule is linked to the solvent DMSO molecules by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Benzoylthiourea derivatives can be synthesized from the reaction between benzoylisothiocyanate and amine compounds. Consequently, with a diamine, a bis(benzoylthiourea) derivative can be obtained. The title compound, (I), is a simple analogue of the derivative when hydrazine is used. The molecular structure and bond dimensions of (I) are in agreement with other benzoylthiourea derivatives, such as N-phenyl- N^{\prime}-benzoylthiourea (Yamin \& Yusof, 2003; Usman et al., 2002; Kaminsky et al., 2001). However, the molecule is centrosymmetric about the mid-point of the $\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$ bond (Fig. 1 and Table 1; symmetry codes are defined in Table 1). The benzoylthiourea and benzoyl groups are cis and trans to atom S1 across the $\mathrm{C}-\mathrm{N}$ bonds. The central bis-thiourea fragment, C 6 to $\mathrm{C} 6 A$, and the phenyl moieties are planar. The whole molecule looks like a wing with a dihedral angle between the central thiourea and each phenyl ring of 35.27 (9) ${ }^{\circ}$.

The presence of intramolecular hydrogen bonding, $\mathrm{N} 2-$ $\mathrm{H} 2 A \cdots \mathrm{O} 1$ and $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~S} 1^{\mathrm{i}}$, results in the formation of two pseudo-six-membered ($\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{C} 7 / \mathrm{O} 1 / \mathrm{H} 2 A$) and fivemembered rings ($\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{N} 2 / \mathrm{N} 2 \mathrm{~A} / \mathrm{H} 2 A^{\mathrm{i}}$) (Table 2). In the crystal structure, the molecule is linked to the solvent dimethyl sulfoxide (DMSO) molecules by $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{ii}}$ intermolecular hydrogen bonds (Fig. 2 and Table 2).

Experimental

A solution of hydrazine ($0.50 \mathrm{~g}, 9.9 \mathrm{mmol}$) in acetone (50 ml) was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoylisothiocyanate in a two-neck roundbottomed flask. The solution was refluxed for about 2 h and then cooled in ice. The white precipitate was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 80%). Recrystallization from DMSO yielded single crystals of (I) suitable for X-ray analysis.

Received 10 February 2003
Accepted 14 February 2003
Online 28 February 2003

Figure 1
The molecular structure of the title compound, (I), shown with 50% probability displacement ellipsoids. Atoms labelled with a suffix 'A' are generated by the symmetry code $-x,-y,-z$.

Figure 2
Packing diagram of (I), viewed down the b axis. The dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=514.70$
Monoclinic, $P 2_{1} / n$
$a=6.4127$ (11) \AA
$b=15.486$ (3) \AA
$c=12.805$ (2) \AA
$\beta=93.971(3)^{\circ}$
$V=1268.6(4) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD area-	2862 independent reflections
\quad detector diffractometer	2008 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.034$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996)	$h=-6 \rightarrow 8$
$T_{\min }=0.804, T_{\max }=0.877$	$k=-20 \rightarrow 18$
7458 measured reflections	$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0599 P)^{2}\right. \\
& +0.1638 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.39 \mathrm{e}_{\mathrm{m}} \mathrm{~A}^{-3} \\
& \begin{array}{l}
\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.135$
$S=1.03$
2862 reflections
155 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 8-\mathrm{N} 2$	$1.323(3)$	$\mathrm{C} 9-\mathrm{S} 2$	$1.780(3)$
$\mathrm{C} 8-\mathrm{N} 1$	$1.386(3)$	$\mathrm{C} 10-\mathrm{S} 2$	$1.764(3)$
$\mathrm{C} 8-\mathrm{S} 1$	$1.664(2)$	$\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$	$1.372(4)$
$\mathrm{C} 7-\mathrm{O} 1$	$1.224(3)$	$\mathrm{O} 2-\mathrm{S} 2$	$1.5026(19)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.380(3)$		
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$116.0(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$120.94(18)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$123.1(2)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$122.5(2)$

Symmetry codes: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	$0.78(3)$	$2.01(3)$	$2.593(3)$	$132(2)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.78(3)$	$2.53(3)$	$2.920(2)$	$113(2)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.84(3)$	$2.01(3)$	$2.843(3)$	$169(3)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
H atoms bonded to N atoms were located from difference maps and refined isotropically. H atoms bonded to C atoms were fixed geometrically at their ideal positions and allowed to ride on the parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Kaminsky, W., Golberg, K. I. \& West, D. X. (2001). J. Mol. Struct. 605, 9-15. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Usman, A., Razak, I. A., Satar, S., Kadir, M. A., Yamin, B. M \& Fun, H.-K. (2002). Acta Cryst. E58, o656-o658.

Yamin, B. M. \& Yusof, M. S. M. (2003). Acta Cryst, E59, o151-o152.

